Evaluate the following integrals:
$\int \sec ^{4} x \tan x d x$
Put $\tan x=t$
$d(\tan x)=d t$
$\sec ^{2} x d x=d t$
$\Rightarrow \mathrm{d} \mathrm{x}=\frac{\mathrm{dt}}{\sec ^{2} \mathrm{x}}$
We can write $\sec ^{4} x=\sec ^{2} x \cdot \sec ^{2} x$
Now , the question becomes
$\Rightarrow \int \sec ^{2} x \cdot \sec ^{2} x \cdot \tan x \frac{d t}{\sec ^{2} x}$
$\Rightarrow \int \sec ^{2} x \cdot \tan x d t$
$\operatorname{Tan}^{2} x+1=\sec ^{2} x$
$\tan x=t$
$t^{2}+1=\sec ^{2} x$
$\Rightarrow \int\left(\mathrm{t}^{2}+1\right) \mathrm{t} \mathrm{dt}$
$\Rightarrow \int \mathrm{t}^{3} \mathrm{dt}+\int \mathrm{t} \cdot \mathrm{dt}$
$\Rightarrow \frac{t^{4}}{4}+\frac{t^{2}}{2}+c$
But $\mathrm{t}=\tan \mathrm{x}$
$\Rightarrow \frac{\tan ^{4} x}{4}+\frac{\tan ^{2} x}{2}+c$