Question:
Evaluate the following integrals:
$\int \frac{\sec x}{\sec 2 x} d x$
Solution:
Here first of all convert secx in terms of $\cos x$
$\therefore$ We get
$\Rightarrow \sec x=\frac{1}{\cos x}, \sec 2 x=\frac{1}{\cos 2 x}$
$\therefore$ We get
$\Rightarrow \int \frac{\cos 2 x}{\cos x} d x$
We know
$\Rightarrow \int \frac{2 \cos ^{2} x-1}{\cos x} d x$
$\therefore$ We can write the above equation as
$\Rightarrow \int \frac{2 \cos ^{2} x-1}{\cos x} d x$
$\Rightarrow \int 2 \cos x d x-\int \frac{1}{\cos x} d x$
$\Rightarrow 2 \sin x-\int \sec x d x$
$\int \sec x d x=\ln |\sec x+\tan x|+c$
$\Rightarrow 2 \sin x-\ln |\sec x+\tan x|+c$