Question:
Evaluate the following integrals:
$\int \frac{e^{2 x}}{1+e^{x}} d x$
Solution:
Assume $1+\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
$e^{x}=t-1$
$d\left(1+e^{x}\right)=d t$
$e^{x} d x=d t$
$d x=\frac{d t}{e^{x}}$
Substitute $t$ and dt we get
$\Rightarrow \int e^{2 x} \cdot \frac{d t}{e^{x}}$
$\Rightarrow \int e^{x} \cdot d t$
$\Rightarrow \int(t-1) d t$
$\Rightarrow \int t \cdot d t-\int d t$
$\Rightarrow \frac{t^{2}}{2}-t+c$
But $t=1+e^{x}$
$\Rightarrow \frac{\left(1+e^{x}\right)^{2}}{2}-\left(1+e^{x}\right)+c$