Question:
Evaluate the following integrals:
$\int \tan ^{3} x \sec ^{2} x d x$
Solution:
Let $I=\int \tan ^{3} x \sec ^{2} x d x$
Let $\tan x=t$, then
$\Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow I=\int t^{3} d t$
$\Rightarrow I=\frac{t^{4}}{4}+c$
$\Rightarrow I=\frac{\tan ^{4} x}{4}+c$
Therefore, $\int \tan ^{3} x \sec ^{2} x d x=\frac{\tan ^{4} x}{4}+c$