Question:
Evaluate the following integrals:
$\int \frac{\cot x}{\log \sin x} d x$
Solution:
Assume $\log (\sin x)=t$
$\mathrm{d}(\log (\sin x))=\mathrm{d} t$
$\Rightarrow \frac{\cos x}{\sin x} d x=d t$
$\Rightarrow \cot x d x=d t$
Put $\mathrm{t}$ and dt in given equation we get
$\Rightarrow \int \frac{\mathrm{dt}}{\mathrm{t}}$
$=\ln |\mathrm{t}|+c$
But $\mathrm{t}=\log (\sin \mathrm{x})$
$=\ln |\log (\sin x)|+c$