Evaluate the following integrals:

Question:

Evaluate: $\int \frac{1}{\mathrm{x}(1+\log \mathrm{x})} \mathrm{dx}$

Solution:

Given, $\int \frac{1}{x(1+\log x)} d x$

Let $1+\log x=t$

$\Rightarrow \frac{d}{d x}(1+\log x)=d t$

$\Rightarrow \frac{1}{x} d x=d t$

$=\int \frac{1}{t} d t$

$=\log t+c$

$=\log (1+\log x)+c$

Leave a comment