Question:
Evaluate the following integrals:
$\int \frac{\log (\log x)}{x} d x$
Solution:
Let $I=\int \frac{\log (\log x)}{x} d x$
It can be written as, $=\int\left(\frac{1}{x}\right)(\log (\log x)) d x$
Using integration by parts,
$I=\log (\log x) \int \frac{1}{x} d x-\int\left(\frac{1}{x \log x} \int \frac{1}{x} d x\right) d x$
We know that, $\int \log x=\frac{1}{x}$ and $\frac{d}{d x} \frac{1}{x}=\log x$
$=\log x(\log x) \times \log x-\int \frac{1}{x \log x} \times \log x d x$
$=\log x(\log x) \times \log x-\int \frac{1}{x} d x$
$=\log x(\log x) \times \log x-\log x+c$
$=\log x(\log (\log x)-1)+c$