Question:
Evaluate the following integrals:
$\int \frac{\sec x \operatorname{cosec} x}{\log (\tan x)} d x$
Solution:
Assume $\log (\tan x)=t$
$d(\log (\tan x))=d t$
$\Rightarrow \frac{\sec ^{2} x}{\tan x} d x=d t$
$\Rightarrow \sec x \cdot \operatorname{cosec} x \cdot d x=d t$
Put $\mathrm{t}$ and $\mathrm{dt}$ in given equation we get
$\Rightarrow \int \frac{\mathrm{dt}}{\mathrm{t}}$
$=\ln |t|+c$
But $t=\log (\tan x)$
$=\ln |\log (\tan x)|+c$