Question:
Evaluate the following integrals:
$\int x \sin ^{3} x d x$
Solution:
Let $\mathrm{I}=\int \mathrm{x} \sin ^{3} \mathrm{x} \mathrm{dx}$
We know that, $\sin ^{3} x=\frac{3 \sin x-\sin 3 x}{4}$
$=\int x\left(\frac{3 \sin x-\sin 3 x}{4}\right) d x$
$=\frac{1}{4} \int x(3 \sin x-\sin 3 x) d x$
Using integration by parts,
$I=\frac{1}{4}\left[x \int(3 \sin x-\sin 3 x) d x-\int 1 \int(3 \sin x-\sin 3 x) d x\right]$
$=\frac{1}{4}\left[x\left(-3 \cos x+\frac{\cos 3 x}{3}\right)-\int\left(-3 \cos x+\frac{\cos 3 x}{3}\right) d x\right]$
$=\frac{1}{4}\left[-3 x \cos x+\frac{x \cos 3 x}{3}+3 \sin x-\frac{\sin 3 x}{9}\right]+c$
$I=\frac{1}{36}[3 x \cos 3 x-27 x \cos x+27 \sin x-\sin 3 x]+c$