Question:
Evaluate the following integrals:
$\int \frac{\sin 2 x}{a \cos ^{2} x+b \sin ^{2} x} d x$
Solution:
Assume $a \cos ^{2} x+b \sin ^{2} x=t$
$d\left(a \cos ^{2} x+b \sin ^{2} x\right)=d t$
$(-2 a \cos x \cdot \sin x+2 b \sin x \cdot \cos x) d x=d t$
$(b \sin 2 x-a \sin 2 x) d x=d t$
$(b-a) \sin 2 x d x=d t$
$\sin 2 x d x=\frac{d t}{(b-a)}$
Put $\mathrm{t}$ and $\mathrm{dt}$ in given equation we get
$\Rightarrow \frac{1}{(b-a)} \int \frac{d t}{t}$
$=\frac{1}{\mathrm{~b}-\mathrm{a}} \ln |\mathrm{t}|+\mathrm{c}$
But $t=a \cos ^{2} x+b \sin ^{2} x$
$=\frac{1}{b-a} \ln \left|a \cos ^{2} x+b \sin ^{2} x\right|+c$