Evaluate the following integrals:

Question:

Evaluate the following integrals:

$\int \frac{\sin 2 x}{(a+b \cos 2 x)^{2}} d x$

Solution:

Assume $a+b \cos 2 x=t$

$d(a+b \cos 2 x)=d t$

$-2 b \sin 2 x d x=d t$

$\sin 2 x d x=\frac{-d t}{2 b}$

$\Rightarrow \frac{-1}{2 b} \int \frac{d t}{t^{2}}$

$\Rightarrow \frac{-1}{2 b} \int \frac{1}{t^{2}} d t$

$\Rightarrow \frac{-1}{2 b} \int t^{-2} \cdot d t$

$\Rightarrow \frac{t^{-1}}{2 b}+c$

But $t=a+b \cos 2 x$

$\Rightarrow \frac{1}{2 b(a+b \cos 2 x)}+C$

Leave a comment