Question:
Evaluate the following integrals:
$\int \sqrt{\frac{1-\sin 2 x}{1+\sin 2 x}} d x$
Solution:
We know $\cos ^{2} x+\sin ^{2} x=1$
Also, $2 \sin x \cos x=\sin 2 x$
$1+\sin 2 x=\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x=(\cos x+\sin x)^{2}$
$1-\sin 2 x=\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x=(\cos x-\sin x)^{2}$
$\therefore$ The equation becomes
$\Rightarrow \int \sqrt{\frac{(\cos x-\sin x)^{2}}{(\cos x+\sin x)^{2}} d x}$
$\Rightarrow \int \frac{(\cos x-\sin x)}{(\cos x+\sin x)} d x$
Assume $\cos x+\sin x=t$
$\therefore d(\cos x+\sin x)=d t$
$=\cos x-\sin x$
$\therefore d t=\cos x-\sin x$
$\Rightarrow \int \frac{\mathrm{d} t}{t}$
$=\ln |t|+c$
But $\mathrm{t}=\cos \mathrm{x}+\sin \mathrm{x}$
$\therefore \ln |\cos x+\sin x|+c$