Evaluate the following integral:
$\int \frac{1}{x\left(x^{3}+8\right)} d x$
Consider the integral,
$I=\int \frac{1}{x\left(x^{3}+8\right)} d x$
Rewriting the above integral, we have
$I=\int \frac{x^{2}}{x^{3}\left(x^{3}+8\right)} d x$
$I=\frac{1}{3} \int \frac{3 x^{2}}{x^{3}\left(x^{3}+8\right)} d x$
Substitute $x^{3}=t$
$3 x^{2} d x=d t$
$I=\frac{1}{3} \int \frac{d t}{t(t+8)}$
$\frac{1}{t(t+8)}=\frac{A}{t}+\frac{B}{t+8}$
$1=A(t+8)+B t$
Equating constants
$1=8 \mathrm{~A}$
$\mathrm{~A}=\frac{1}{8}$
Equating coefficients of $t$
$0=A+B$
$B=-\frac{1}{8}$
$I=\frac{1}{3} \int \frac{d t}{t(t+8)}$
$=\frac{1}{3} \int\left(\frac{\frac{1}{8}}{t}-\frac{\frac{1}{8}}{t+8}\right) d t$
$=\frac{1}{3} \times \frac{1}{8} \int \frac{\mathrm{dt}}{\mathrm{t}}-\frac{1}{3} \times \frac{1}{8} \int \frac{\mathrm{dt}}{\mathrm{t}+8}$
$=\frac{1}{24} \log \mathrm{t}-\frac{1}{24} \log |\mathrm{t}+8|+\mathrm{C}$
$=\frac{1}{24} \log \mathrm{x}^{3}-\frac{1}{24} \log \left|\mathrm{x}^{3}+8\right|+\mathrm{C}$
$=\frac{3}{24} \log \mathrm{x}-\frac{1}{24} \log \left|\mathrm{x}^{3}+8\right|+\mathrm{C}$
$=\frac{1}{8} \log \mathrm{x}-\frac{1}{24} \log \left|\mathrm{x}^{3}+8\right|+\mathrm{C}$