Evaluate the following:
(i) 102 × 106
(ii) 109 × 107
(iii) 35 × 37
(iv) 53 × 55
(v) 103 × 96
(vi) 34 × 36
(vii) 994 × 1006
(i) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
$102 \times 106$
$=(100+2)(100+6)$
$=100^{2}+(2+6) 100+2 \times 6$
$=10000+800+12$
$=10812$
(ii) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
$109 \times 107$
$=(100+9)(100+7)$
$=100^{2}+(9+7) 100+9 \times 7$
$=10000+1600+63$
$=11663$
(iii) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
$35 \times 37$
$=(30+5)(30+7)$
$=30^{2}+(5+7) 30+5 \times 7$
$=900+360+35$
$=1295$
(iv) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
$53 \times 55$
$=(50+3)(50+5)$
$=50^{2}+(3+5) 50+3 \times 5$
$=2500+400+15$
$=2915$
(v) Here, we will use the identity $(x+a)(x-b)=x^{2}+(a-b) x-a b$
$103 \times 96$
$=(100+3)(100-4)$
$=100^{2}+(3-4) 100-3 \times 4$
$=10000-100-12$
$=9888$
(vi) Here, we will use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
$34 \times 36$
$=(30+4)(30+6)$
$=30^{2}+(4+6) 30+4 \times 6$
$=900+300+24$
$=1224$
(vii) Here, we will use the identity $(x-a)(x+b)=x^{2}+(b-a) x-a b$
$994 \times 1006$
$=(1000-6) \times(1000+6)$
$=1000^{2}+(6-6) \times 1000-6 \times 6$
$=1000000-36$
$=999964$