Evaluate $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
The given function is
$f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left[\frac{|x|}{x}\right]$
$=\lim _{x \rightarrow 0}\left(\frac{-x}{x}\right) \quad[$ When $x$ is negaitve, $|x|=-x]$
$=\lim _{x \rightarrow 0}(-1)$
$=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left[\frac{|x|}{x}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \quad[$ When $x$ is positive, $|x|=x]$
$=\lim _{x \rightarrow 0}(1)$
$=1$
It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.