Question:
Evaluate each of the following
$\sin 60 \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$
Solution:
We have to find the value of the expression
$\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$....(1)
Now $\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}$
So by substituting above values in equation (1)
We get,
$\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$
$=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}$
$=\frac{3}{4}+\frac{1}{4}$
$=\frac{3+1}{4}$
$=\frac{4}{4}$
$=1$
Therefore,
$\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}=1$