Evaluate each of the following
(a) $(103)^{3}$
(b) $(98)^{3}$
(c) $(9.9)^{3}$
(d) $(10.4)^{3}$
(e) $(598)^{3}$
(f) $(99)^{3}$
Given,
(a) $(103)^{3}$
we know that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$\Rightarrow(103)^{3}$ can be written as $(100+3)^{3}$
Here, a = 100 and b = 3
$(103)^{3}=(100+3)^{3}$
$=(100)^{3}+(3)^{3}+3(100)(3)(100+3)$
= 1000000 + 27 + (900*103)
= 1000000 + 27 + 92700
= 1092727
The value of $(103)^{3}=1092727$
(b) $(98)^{3}$
we know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\Rightarrow(98)^{3}$ can be written as $(100-2)^{3}$
Here, a = 100 and b = 2
$(98)^{3}=(100-2)^{3}$
$=(100)^{3}-(2)^{3}-3(100)(2)(100-2)$
= 1000000 - 8 - (600*102)
= 1000000 – 8 – 58800
= 941192
The value of $(98)^{3}=941192$
(c) $(9.9)^{3}$
we know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\Rightarrow(9.9)^{3}$ can be written as $(10-0.1)^{3}$
Here, a = 10 and b = 0.1
$(9.9)^{3}=(10-0.1)^{3}$
$=(10)^{3}-(0.1)^{3}-3(10)(0.1)(10-0.1)$
= 1000 – 0.001 - (3*9.9)
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
The value of $(9.9)^{3}=970.299$
(d) $(10.4)^{3}$
we know that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$\Rightarrow(10.4)^{3}$ can be written as $(10+0.4)^{3}$
Here, a = 10 and b = 0.4
$(10.4)^{3}=(10+0.4)^{3}$
$=(10)^{3}+(0.4)^{3}+3(10)(0.4)(10+0.4)$
= 1000 + 0.064 + (12*10.4)
= 1000 + 0.064 + 124.8
= 1000 + 124.864
= 1124.864
The value of $(10.4)^{3}=1124.864$
(e) $(598)^{3}$
we know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\Rightarrow(598)^{3}$ can be written as $(600-2)^{3}$
Here, a = 600 and b = 2
$(598)^{3}=(600-2)^{3}$
$=(600)^{3}-(2)^{3}-3(600)(2)(600-2)$
= 216000000 - 8 - (3600*598)
= 216000000 - 8 - 2152800
= 216000000 - 2152808
= 213847192
The value of $(598)^{3}=213847192$
(f) (99) ${ }^{3}$
we know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\Rightarrow(99)^{3}$ can be written as $(100-1)^{3}$
Here , a = 100 and b = 1
$(99)^{3}=(100-1)^{3}$C
$=(100)^{3}-(1)^{3}-3(100)(1)(100-1)$
= 1000000 - 1 - (300*99)
= 1000000 - 1 - 29700
= 1000000 - 29701
= 970299
The value of $(99)^{3}=970299$