Evaluate each of the following:
(i) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)$
(ii) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{3 \pi}{4}\right)$
(iii) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{6 \pi}{5}\right)$
(iv) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{11 \pi}{6}\right)$
(v) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{13 \pi}{6}\right)$
(vi) $\operatorname{cosec}^{-1}\left\{\operatorname{cosec}\left(-\frac{9 \pi}{4}\right)\right\}$
We know that
$\operatorname{cosec}^{-1}(\operatorname{cosec} \theta)=\theta, \quad[-\pi / 2,0) \cup(0, \pi / 2]$
(i) $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)=\frac{\pi}{4}$
(ii)
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{3 \pi}{4}\right)=\operatorname{cosec}^{-1}\left[\operatorname{cosec}\left(\pi-\frac{\pi}{4}\right)\right]$
$=\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{4}\right)$
$=\frac{\pi}{4}$
(iii)
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{6 \pi}{5}\right)=\operatorname{cosec}^{-1}\left[\operatorname{cosec}\left(\pi+\frac{\pi}{5}\right)\right]$
$=\operatorname{cosec}^{-1}\left(\operatorname{cosec}-\frac{\pi}{5}\right)$
$=-\frac{\pi}{5}$
(iv)
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{11 \pi}{6}\right)=\operatorname{cosec}^{-1}\left[\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)\right]$
$=\operatorname{cosec}^{-1}\left(\operatorname{cosec}-\frac{\pi}{6}\right)$
$=-\frac{\pi}{6}$
(v)
$\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{13 \pi}{6}\right)=\operatorname{cosec}^{-1}\left[\operatorname{cosec}\left(2 \pi+\frac{\pi}{6}\right)\right]$
$=\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{\pi}{6}\right)$
$=\frac{\pi}{6}$
(vi)
$\operatorname{cosec}^{-1}\left\{\operatorname{cosec}\left(-\frac{9 \pi}{4}\right)\right\}=\operatorname{cosec}^{-1}\left[-\operatorname{cosec}\left(2 \pi+\frac{\pi}{4}\right)\right]$
$=\operatorname{cosec}^{-1}\left(-\operatorname{cosec} \frac{\pi}{4}\right)$
$=\operatorname{cosec}^{-1}\left(\operatorname{cosec}-\frac{\pi}{4}\right)$
$=-\frac{\pi}{4}$