Evaluate each of the following:
(i) $\cos ^{-1}\left\{\cos \left(-\frac{\pi}{4}\right)\right\}$
(ii) $\cos ^{-1}\left\{\cos \frac{5 \pi}{4}\right\}$
(iii) $\cos ^{-1}\left\{\cos \left(\frac{4 \pi}{3}\right)\right\}$
(iv) $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$
(v) $\cos ^{-1}(\cos 3)$
(vi) $\cos ^{-1}(\cos 4)$
(vii) $\cos ^{-1}(\cos 5)$
(viii) $\cos ^{-1}(\cos 12)$
We know
\cos ^{-1}(\cos \theta)=\theta \text { if } 0 \leq \theta \leq \pi
(i) We have
$\cos ^{-1}\left\{\cos \left(-\frac{\pi}{4}\right)\right\}=\cos ^{-1}\left\{\cos \left(\frac{\pi}{4}\right)\right\}$
$=\frac{\pi}{4}$
(ii) We have
$\cos ^{-1}\left\{\cos \left(\frac{5 \pi}{4}\right)\right\}=\cos ^{-1}\left\{\cos \left(2 \pi-\frac{3 \pi}{4}\right)\right\}$
$=\cos ^{-1}\left\{\cos \left(\frac{3 \pi}{4}\right)\right\}$
$=\frac{3 \pi}{4}$
(iii) We have
$\cos ^{-1}\left\{\cos \left(\frac{4 \pi}{3}\right)\right\}=\cos ^{-1}\left\{\cos \left(2 \pi-\frac{2 \pi}{3}\right)\right\}$
$=\cos ^{-1}\left\{\cos \left(\frac{2 \pi}{3}\right)\right\}$
$=\frac{2 \pi}{3}$
(iv) We have
$\cos ^{-1}\left\{\cos \left(\frac{13 \pi}{6}\right)\right\}=\cos ^{-1}\left\{\cos \left(2 \pi+\frac{\pi}{6}\right)\right\}$
$=\cos ^{-1}\left\{\cos \left(\frac{\pi}{6}\right)\right\}$
$=\frac{\pi}{6}$
(v) We have
$\cos ^{-1}(\cos 3)=3$
(vi)We have
$\cos ^{-1}(\cos 4)=\cos ^{-1}\{\cos (2 \pi-4)\}$
$=2 \pi-4$
(vii) We have
$\cos ^{-1}(\cos 5)=\cos ^{-1}\{\cos (2 \pi-5)\}$
$=2 \pi-5$
(viii) We have
$\cos ^{-1}(\cos 12)=\cos ^{-1}\{\cos (4 \pi-12)\}$
$=4 \pi-12$