Evaluate each of the following
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$
We have to find the following expression
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ} \ldots \ldots$ (1)
Now,
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}, \cos 60^{\circ}=\frac{1}{2}, \cos 90^{\circ}=0$
So by substituting above values in equation (1)
We get,
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+(0)^{2}$
$=\frac{(\sqrt{3})^{2}}{2^{2}}+\frac{1^{2}}{(\sqrt{2})^{2}}+\frac{1^{2}}{2^{2}}+0$
$=\frac{3}{4}+\frac{1}{2}+\frac{1}{4}$
Now by taking denominator 4 together and simplifying
We get,
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$
$=\frac{3}{4}+\frac{1}{4}+\frac{1}{2}$
$=\frac{3+1}{4}+\frac{1}{2}$
$=\frac{4}{4}+\frac{1}{2}$
$=1+\frac{1}{2}$
Now by taking LCM
We get,
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$
$=\frac{1 \times 2}{1 \times 2}+\frac{1}{2}$
$=\frac{2}{2}+\frac{1}{2}$
$=\frac{2+1}{2}$
$=\frac{3}{2}$
Therefore,
$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}=\frac{3}{2}$