Evaluate each of the following
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$
We have,
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$....(1)
Now,
$\sin 90^{\circ}=\cos 0^{\circ}=1, \tan 45^{\circ}=\cot 45^{\circ}=1, \operatorname{cosec} 30^{\circ}=\sec 60^{\circ}=2$
We get,
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$
$=\frac{1}{2}+\frac{2}{1}-\frac{5 \times 1}{2 \times 1}$
$=\frac{1}{2}+\frac{2}{1}-\frac{5}{2}$
Now by taking terms with denominator 2 together and solving
We get,
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$
$=\frac{1-5}{2}+\frac{2}{1}$
$=\frac{-4}{2}+2$
Now $\frac{-4}{2}$ gets reduced to $-2$
Therefore,
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$
$=-2+2$
$=0$
Therefore,
$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}=0$