Evaluate each of the following:
(i) $\sec ^{-1}\left(\sec \frac{\pi}{3}\right)$
(ii) $\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right)$
(iii) $\sec ^{-1}\left(\sec \frac{5 \pi}{4}\right)$
(iv) $\sec ^{-1}\left(\sec \frac{7 \pi}{3}\right)$
(v) $\sec ^{-1}\left(\sec \frac{9 \pi}{5}\right)$
(vi) $\sec ^{-1}\left\{\sec \left(-\frac{7 \pi}{3}\right)\right\}$
(vii) $\sec ^{-1}\left(\sec \frac{13 \pi}{4}\right)$
(viii) $\sec ^{-1}\left(\sec \frac{25 \pi}{\pi}\right)$
We know that
$\sec ^{1}(\sec \theta)=\theta, \quad[0, \pi / 2) \cup(\pi / 2, \pi]$
(i) We have
$\sec ^{-1}\left(\sec \frac{\pi}{3}\right)=\frac{\pi}{3}$
(ii) We have
$\sec ^{-1}\left(\sec \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}$
(iii) We have
$\sec ^{-1}\left(\sec \frac{5 \pi}{4}\right)=\sec ^{-1}\left[\sec \left(2 \pi-\frac{3 \pi}{4}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{3 \pi}{4}\right)\right]$
$=\frac{3 \pi}{4}$
(iv)We have
$\sec ^{-1}\left(\sec \frac{7 \pi}{3}\right)=\sec ^{-1}\left[\sec \left(2 \pi+\frac{\pi}{3}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{\pi}{3}\right)\right]$
$=\frac{\pi}{3}$
(v)We have
$\sec ^{-1}\left(\sec \frac{9 \pi}{5}\right)=\sec ^{-1}\left[\sec \left(2 \pi-\frac{\pi}{5}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{\pi}{5}\right)\right]$
$=\frac{\pi}{5}$
(vi) We have
$\sec ^{-1}\left\{\sec \left(-\frac{7 \pi}{3}\right)\right\}=\sec ^{-1}\left\{\sec \left(\frac{7 \pi}{3}\right)\right\}$
$=\sec ^{-1}\left[\sec \left(2 \pi+\frac{\pi}{3}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{\pi}{3}\right)\right]$
$=\frac{\pi}{3}$
(vii)We have
$\sec ^{-1}\left(\sec \frac{13 \pi}{4}\right)=\sec ^{-1}\left[\sec \left(4 \pi-\frac{3 \pi}{4}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{3 \pi}{4}\right)\right]$
$=\frac{3 \pi}{4}$
(viii)We have
$\sec ^{-1}\left(\sec \frac{25 \pi}{6}\right)=\sec ^{-1}\left[\sec \left(4 \pi+\frac{\pi}{6}\right)\right]$
$=\sec ^{-1}\left[\sec \left(\frac{\pi}{6}\right)\right]$
$=\frac{\pi}{6}$