Evaluate each of the following:
(i) $\cot ^{-1}\left(\cot \frac{\pi}{3}\right)$
(ii) $\cot ^{-1}\left(\cot \frac{4 \pi}{3}\right)$
(iii) $\cot ^{-1}\left(\cot \frac{9 \pi}{4}\right)$
(iv) $\cot ^{-1}\left(\cot \frac{19 \pi}{6}\right)$
(v) $\cot ^{-1}\left\{\cot \left(-\frac{8 \pi}{3}\right)\right\}$
(vi) $\cot ^{-1}\left\{\cot \left(\frac{21 \pi}{4}\right)\right\}$
We know that
$\cot ^{-1}(\cot \theta)=\theta, \quad(0, \pi)$
(i) We have
$\cot ^{-1}\left(\cot \frac{\pi}{3}\right)=\frac{\pi}{3}$
(ii) We have
$\cot ^{-1}\left(\cot \frac{4 \pi}{3}\right)=\cot ^{-1}\left[\cot \left(\pi+\frac{\pi}{3}\right)\right]$
$=\cot ^{-1}\left(\cot \frac{\pi}{3}\right)$
$=\frac{\pi}{3}$
(iii) We have
$\cot ^{-1}\left(\cot \frac{9 \pi}{4}\right)=\cot ^{-1}\left[\cot \left(2 \pi+\frac{\pi}{4}\right)\right]$
$=\cot ^{-1}\left(\cot \frac{\pi}{4}\right)$
$=\frac{\pi}{4}$
(iv) We have
$\cot ^{-1}\left(\cot \frac{19 \pi}{6}\right)=\cot ^{-1}\left[\cot \left(\pi+\frac{\pi}{6}\right)\right]$
$=\cot ^{-1}\left(\cot \frac{\pi}{6}\right)$
$=\frac{\pi}{6}$
(v) We have
$\cot ^{-1}\left[\cot \left(-\frac{8 \pi}{3}\right)\right]=\cot ^{-1}\left[-\cot \left(\frac{8 \pi}{3}\right)\right]$
$=\cot ^{-1}\left[-\cot \left(3 \pi-\frac{\pi}{3}\right)\right]$
$=\cot ^{-1}\left(\cot \frac{\pi}{3}\right)$
$=\frac{\pi}{3}$
(vi) We have
$\cot ^{-1}\left(\cot \frac{21 \pi}{4}\right)=\cot ^{-1}\left[\cot \left(5 \pi+\frac{\pi}{4}\right)\right]$
$=\cot ^{-1}\left(\cot \frac{\pi}{4}\right)$
$=\frac{\pi}{4}$