Evaluate each of the following:
(i) $\tan ^{-1}\left(\tan \frac{\pi}{3}\right)$
(ii) $\tan ^{-1}\left(\tan \frac{6 \pi}{7}\right)$
(iii) $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$
(iv) $\tan ^{-1}\left(\tan \frac{9 \pi}{4}\right)$
(v) $\tan ^{-1}(\tan 1)$
(v) $\tan ^{-1}(\tan 2)$
(v) $\tan ^{-1}(\tan 4)$
(v) $\tan ^{-1}(\tan 12)$
We know that
$\tan ^{1}(\tan \theta)=\theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
(i) We have
$\tan ^{-1}\left(\tan \frac{\pi}{3}\right)=\frac{\pi}{3}$
(ii) We have
$\tan ^{-1}\left(\tan \frac{6 \pi}{7}\right)=\tan ^{-1}\left[\tan \left(\pi-\frac{\pi}{7}\right)\right]$
$=\tan ^{-1}\left[\tan \left(-\frac{\pi}{7}\right)\right]$
$=-\frac{\pi}{7}$
(iii) We have
$\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left[\tan \left(\pi+\frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[\tan \left(\frac{\pi}{6}\right)\right]$
$=\frac{\pi}{6}$
(iv) We have
$\tan ^{-1}\left(\tan \frac{9 \pi}{4}\right)=\tan ^{-1}\left[\tan \left(2 \pi+\frac{\pi}{4}\right)\right]$
$=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}\right)\right]$
$=\frac{\pi}{4}$
(v) We have
$\tan ^{-1}(\tan 1)=1$
(vi) We have
$\tan ^{-1}(\tan 2)=\tan ^{-1}[\tan (-\pi+2)]$
$=2-\pi$
(vii) We have
$\tan ^{-1}(\tan 4)=\tan ^{-1}[\tan (-\pi+4)]$
$=4-\pi$
(viii) We have
$\tan ^{-1}(\tan 12)=\tan ^{-1}[\tan (-4 \pi+12)]$
$=12-4 \pi$