Question:
Evaluate
$\lim _{x \rightarrow 0}\left(\frac{\sqrt{3-x}-1}{2-x}\right)$
Solution:
To evaluate:
$\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}$
Formula used: We have,
$\lim _{x \rightarrow a} f(x)=f(a)$
As $\mathrm{X} \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}=\frac{\sqrt{3}-1}{2}$
Thus, the value of $\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}$ is $\frac{\sqrt{3}-1}{2}$