Evaluate

Question:

Evaluate

$\lim _{x \rightarrow 0}\left(\frac{\sqrt{3-x}-1}{2-x}\right)$

 

Solution:

To evaluate:

$\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}$

Formula used: We have,

$\lim _{x \rightarrow a} f(x)=f(a)$

As $\mathrm{X} \rightarrow 0$, we have

$\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}=\frac{\sqrt{3}-1}{2}$

Thus, the value of $\lim _{x \rightarrow 0} \frac{\sqrt{3-x}-1}{2-x}$ is $\frac{\sqrt{3}-1}{2}$

 

 

Leave a comment