Question:
Evaluate
$\lim _{x \rightarrow 1}\left(\frac{x^{3}-1}{x-1}\right)$
Solution:
To evaluate:
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
Formula used: We have,
$\lim _{x \rightarrow a} f(x)=f(a)$ and
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
As $\mathrm{X} \rightarrow 1$, we have
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1}$
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)$
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=1+1+1$
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=3$
Thus, the value of $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$ is 3 .