Question:
Evaluate: $\int \frac{1}{\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}}} \mathrm{dx}$
Solution:
Let $I=\int \frac{1}{\sqrt{x+1}+\sqrt{x}} d x$
$=\int \frac{1}{\sqrt{x+1}+\sqrt{x}} d x$
Now Multiply with the conjugate, we get
$=\int \frac{1}{\sqrt{x+1}+\sqrt{x}} \cdot \frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}} d x$
$=\int \frac{\sqrt{x+1}-\sqrt{x}}{x+1-x} d x$
$=\int \sqrt{x+1}-\sqrt{x} d x$
$=\int(x+1)^{\frac{1}{2}}-x^{\frac{1}{2}}$
$=\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{3}{2}}}{\frac{3}{2}}$
Hence $I=\frac{2}{3}(x+1)^{\frac{3}{2}}-\frac{2}{3}(x)^{\frac{3}{2}}+C$