Question:
Evaluate: $\int(x+2) \sqrt{3 x+5} d x$
Solution:
Here multiply and divide the question by 3
We get
$\Rightarrow \frac{1}{3} \int 3(\mathrm{x}+2) \sqrt{3 \mathrm{x}+5} \mathrm{dx}$
$\Rightarrow \frac{1}{3} \int(3 \mathrm{x}+6) \sqrt{3 \mathrm{x}+5} \mathrm{dx}$
Add and subtract 1 from above equation
$\Rightarrow \frac{1}{3} \int(3 x+6+1-1) \sqrt{3 x+5} d x$
$\Rightarrow \frac{1}{3} \int(3 x+5-1) \sqrt{3 x+5} d x$
$\Rightarrow \frac{1}{3} \int(3 x+5)^{\frac{3}{2}} d x-\int \frac{1}{3} \sqrt{3 x+5} d x$
$\Rightarrow \frac{1}{3} \times \frac{2(3 x+5)^{\frac{5}{2}}}{3 \times 5}-\frac{2(3 x+5)^{\frac{3}{2}}}{3 \times 3}+C$
$\Rightarrow \frac{2(3 x+5)^{\frac{5}{2}}}{45}-\frac{2(3 x+5)^{\frac{3}{2}}}{9}+C$