Evaluate:
(i) $\tan \left\{\cos ^{-1}\left(-\frac{7}{25}\right)\right\}$
(ii) $\operatorname{cosec}\left\{\cot ^{-1}\left(-\frac{12}{5}\right)\right\}$
(iii) $\cos \left(\tan ^{-1} \frac{3}{4}\right)$
(i)
$\tan \left\{\cos ^{-1}\left(-\frac{7}{25}\right)\right\}=\tan \left\{\cos ^{-1}\left(\pi-\frac{7}{25}\right)\right\}$
$=-\tan \left\{\cos ^{-1}\left(\frac{7}{25}\right)\right\}$
$=-\tan \left\{\tan ^{-1}\left[\frac{\sqrt{1-\left(\frac{7}{25}\right)^{2}}}{\frac{7}{25}}\right]\right\}$
$=-\tan \left\{\tan \frac{24}{7}\right\}$
$=-\frac{24}{7}$
(ii)
$\operatorname{cosec}\left\{\cot ^{-1}\left(-\frac{12}{5}\right)\right\}=\operatorname{cosec}\left\{\cot ^{-1}\left(\pi-\frac{12}{5}\right)\right\}$
$=\operatorname{cosec}\left\{\cot ^{-1}\left(\frac{12}{5}\right)\right\}$
$=\operatorname{cosec}\left\{\sin ^{-1}\left(\frac{\frac{5}{12}}{\sqrt{1+\left(\frac{5}{12}\right)^{2}}}\right)\right\}$
$=\operatorname{cosec}\left\{\sin ^{-1}\left(\frac{5}{13}\right)\right\}$
$=\operatorname{cosec}\left\{\operatorname{cosec}^{-1}\left(\frac{13}{5}\right)\right\}$
$=\frac{13}{5}$
(iii) We have
$\cos \left(\tan ^{-1} \frac{3}{4}\right)=\cos \left[\frac{1}{2} \cos ^{-1}\left(\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}\right)\right] \quad\left[\because 2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right]$
$=\cos \left[\frac{1}{2} \cos ^{-1}\left(\frac{7}{25}\right)\right]$
Let $y=\cos ^{-1}\left(\frac{7}{25}\right)$
$\quad \Rightarrow \cos y=\frac{7}{25}$
Now,
$\cos \left[\frac{1}{2} \cos ^{-1}\left(\frac{7}{25}\right)\right]=\cos \left[\frac{1}{2} y\right]$
$=\sqrt{\frac{\cos y+1}{2}} \quad\left[\because \cos 2 x=2 \cos ^{2} x-1\right]$
$=\sqrt{\frac{\frac{7}{25}+1}{2}}$
$=\sqrt{\frac{32}{50}}$
$=\frac{4}{5}$
$\therefore \cos \left[\tan ^{-1}\left(\frac{3}{4}\right)\right]=\frac{4}{5}$