Evaluate:

Question:

Evaluate:

(i) $\left(\frac{4}{7}\right)^{3}$

(ii) $\left(\frac{10}{11}\right)^{3}$

(iii) $\left(\frac{1}{15}\right)^{3}$

(iv) $\left(1 \frac{3}{10}\right)^{3}$

Solution:

(i) $\left(\frac{4}{7}\right)^{3}=\left(\frac{4}{7} \times \frac{4}{7} \times \frac{4}{7}\right)=\left(\frac{64}{343}\right)$

Thus, the cube of $\left(\frac{4}{7}\right)$ is $\left(\frac{64}{343}\right)$.

(ii) $\left(\frac{10}{11}\right)^{3}=\left(\frac{10}{11} \times \frac{10}{11} \times \frac{10}{11}\right)=\left(\frac{1000}{1331}\right)$

Thus, the cube of $\left(\frac{10}{11}\right)$ is $\left(\frac{1000}{1331}\right)$.

(iii) $\left(\frac{1}{15}\right)^{3}=\left(\frac{1}{15} \times \frac{1}{15} \times \frac{1}{15}\right)=\left(\frac{1}{3375}\right)$

Thus, the cube of $\left(\frac{1}{15}\right)$ is $\left(\frac{1}{3375}\right)$

(iv) $\left(1 \frac{3}{10}\right)^{3}=\left(\frac{13}{10}\right)^{3}=\left(\frac{13}{10} \times \frac{13}{10} \times \frac{13}{10}\right)=\left(\frac{2197}{1000}\right)$

Thus, the cube of $\left(1 \frac{3}{10}\right)$ is $\left(\frac{2197}{1000}\right)$.

Leave a comment