Evaluate
$\lim _{x \rightarrow 0}\left(\frac{a^{x}-a^{-x}}{x}\right)$
To evaluate:
$\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}$
Formula used:
L'Hospital's rule
Let $f(x)$ and $g(x)$ be two functions which are differentiable on an open interval I except at a point a where
$\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})=0$ or $\pm \infty$
then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
As $\mathrm{x} \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}=\frac{0}{0}$
This represents an indeterminate form. Thus applying L'Hospital's rule, we get
$\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(a^{x}-a^{-x}\right)}{\frac{d}{d x}(x)}$
$\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}=\lim _{x \rightarrow 0} \frac{a^{x} \ln a+a^{-x} \ln a}{1}$
$\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}=2 \ln a$
Thus, the value of $\lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}$ is $2 \ln a$.