Evaluate:
(i) $i^{19}$
(ii) $i^{62}$
(ii) $\mathrm{i}^{373} .$
We all know that $i=\sqrt{(}-1)$.
And ${ }^{i^{4 n}}=1$
$\mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}$ (where $\mathrm{n}$ is any positive integer)
$\mathrm{i}^{4 \mathrm{n}+2}=-1$
$\mathrm{i}^{4 \mathrm{n}+3}=-1$
So,
(i) L.H.S $=\mathrm{i}^{19}$
$=i^{4 \times 4+3}$
$=i^{4 n+3}$
Since it is of the form $\mathrm{i}^{4 \mathrm{n}+3}$ so the solution would be simply $-\mathrm{i}$
Hence the value of $\mathrm{i}^{19}$ is $-\mathrm{i}$.
(ii) $\mathrm{L} \cdot \mathrm{H} \cdot \mathrm{S}=\mathrm{i}^{62}$
$\Rightarrow \mathrm{i}^{4 \times 15+2}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+2} \Rightarrow \mathrm{i}^{2}=-1$
so it is of the form $i^{4 n+2}$
so its solution would be $-1$
(iii) L.H.S. $=\mathrm{i}^{373}$
$\Rightarrow \mathrm{i}^{4 \times 93+1}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}$
$\Rightarrow \mathrm{i}$
So, it is of the form of $\mathrm{i}^{4 \mathrm{n}+1}$ so the solution would be $\mathrm{i}$.