Question:
Evaluate: $\int \frac{1}{1+\cos 3 x} d x$
Solution:
Let $I=\int \frac{1}{1+\cos 3 x} d x$
$=\int \frac{1}{1+\cos 3 x} d x$
Now Multiply with Conjugate,
$=\int \frac{1}{1+\cos 3 x} \times \frac{1-\cos 3 x}{1-\cos 3 x} d x$
$=\int \frac{1-\cos 3 x}{1-\cos ^{2} 3 x} d x$
$=\int \frac{1-\cos 3 x}{\sin ^{2} 3 x} d x$
$=\int \frac{1}{\sin ^{2} 3 \mathrm{x}} \mathrm{dx}-\int \frac{\cos 3 \mathrm{x}}{\sin ^{2} 3 \mathrm{x}} \mathrm{dx}$
$=\int\left(\operatorname{cosec}^{2} 3 x-\operatorname{cosec} 3 x \cdot \cot 3 x\right) d x$
$=-\frac{\cot 3 x}{3}+\frac{\operatorname{cosec} 3 x}{3}$
$=-\frac{1}{3} \cdot \frac{\cos 3 x}{\sin 3 x}+\frac{1}{3} \cdot \frac{1}{\sin 3 x}$
Hence, $l=\frac{1-\cos 3 x}{3 \sin 3 x}+C$