Evaluate
$\lim _{x \rightarrow 4}\left(\frac{e^{x}-e^{4}}{x-4}\right)$
To evaluate
$\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}$
Formula used:
L'Hospital's rule
Let $f(x)$ and $g(x)$ be two functions which are differentiable on an open interval I except at a point a where
$\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})=0$ or $\pm \infty$
then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
As $x \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{e^{2+x}-e^{2}}{x}=\frac{0}{0}$
This represents an indeterminate form. Thus applying L'Hospital's rule, we get
$\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{d}{d x}\left(e^{x}-e^{4}\right)}{\frac{d}{d x}(x-4)}$
$\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}=\lim _{x \rightarrow 4} \frac{e^{x}}{1}$
$\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}=e^{4}$
Thus, the value of $\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}$ is $e^{4}$.