Evaluate:
(i) $\sqrt[3]{4^{3} \times 6^{3}}$
(ii) $\sqrt[3]{8 \times 17 \times 17 \times 17}$
(iii) $\sqrt[3]{700 \times 2 \times 49 \times 5}$
(iv) $125 \sqrt[3]{\alpha^{6}}-\sqrt[3]{125 \alpha^{6}}$
Property:
For any two integers $a$ and $b, \sqrt[3]{a b}=\sqrt[3]{a} \times \sqrt[3]{b}$
(i) From the above property, we have:
$\sqrt[3]{4^{3} \times 6^{3}}=\sqrt[3]{4^{3}} \times \sqrt[3]{6^{3}}=4 \times 6=24$
(ii) Use above property and proceed as follows:
$\sqrt[3]{8 \times 17 \times 17 \times 17}=\sqrt[3]{2^{3} \times 17^{3}}=\sqrt[3]{2^{3}} \times \sqrt[3]{17^{3}}=2 \times 17=34$
(iii) From the above property, we have:
$\sqrt[3]{700 \times 2 \times 49 \times 5}$
$=\sqrt[3]{2 \times 2 \times 5 \times 5 \times 7 \times 2 \times 7 \times 7 \times 5} \quad(\because 700=2 \times 2 \times 5 \times 5 \times 7$ and $49=7 \times 7)$
$=\sqrt[3]{2^{3} \times 5^{3} \times 7^{3}}$
$=\sqrt[3]{2^{3}} \times \sqrt[3]{5^{3}} \times \sqrt[3]{7^{3}}$
$=2 \times 5 \times 7$
$=70$
(iv) From the above property, we have:
$125 \sqrt[3]{a^{6}}-\sqrt[3]{125 a^{6}}$
$125 \sqrt[3]{a^{6}}-\sqrt[3]{125 a^{6}}$
$=125 \sqrt[3]{a^{6}}-\left(\sqrt[3]{125} \times \sqrt[6]{a^{6}}\right)$
$=125 \times a^{2}-\left(5 \times a^{2}\right) \quad\left(\because \sqrt[3]{a^{6}}=\sqrt[3]{[a \times a \times a\} \times\{a \times a \times a\}}=a \times a=a^{2}\right.$ and $\left.\sqrt[3]{125}=\sqrt[3]{5 \times 5 \times 5}=5\right)$
$=125 a^{2}-5 a^{2}$
$=120 a^{2}$