Evaluate
$\lim _{x \rightarrow 1}\left(\frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}\right)$
To evaluate:
$\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}$
Formula used:
L'Hospital's rule
Let $f(x)$ and $g(x)$ be two functions which are differentiable on an open interval I except at a point a where
$\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})=0$ or $\pm \infty$
then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
As $x \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}=\frac{0}{0}$
This represents an indeterminate form. Thus applying L'Hospital's rule, we get
$\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{\frac{d}{d x}(\sqrt{3+x}-\sqrt{5-x})}{\frac{d}{d x}\left(x^{2}-1\right)}$
$\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{2 \sqrt{3+x}}+\frac{1}{2 \sqrt{5-x}}}{2 x}$
$\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}=\frac{1}{4}$
Thus, the value of $\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}$ is $\frac{1}{4}$