Question:
Evaluate:
${ }^{90} \mathrm{C}_{88}$
Solution:
We know that:
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n !}{(n-r) ! \times r !}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{90 !}{(90-88) ! \times 88 !}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{90 !}{2 ! \times 88 !}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{90 \times 89 \times 88 !}{2 ! \times 88 !}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{90 \times 89}{2 !}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{90 \times 89}{2 \times 1}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=\frac{8010}{2}$
$\Rightarrow{ }^{90} \mathrm{C}_{88}=4005$
Ans: $\Rightarrow{ }^{90} \mathrm{C}_{88}=4005$