Evaluate
$\lim _{x \rightarrow 0}\left(\frac{\sqrt{2-x}-\sqrt{2+x}}{x}\right)$
To evaluate:
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}$
Formula used: L'Hospital's rule
Let $f(x)$ and $g(x)$ be two functions which are differentiable on an open interval I except at a point a where
$\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})=0$ or $\pm \infty$
then
$\lim _{x \rightarrow a} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}=\lim _{x \rightarrow a} \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{g}^{\prime}(\mathrm{x})}$
As $\mathrm{x} \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}=\frac{0}{0}$
This represents an indeterminate form. Thus applying L'Hospital's rule, we get
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sqrt{2-x}-\sqrt{2+x})}{\frac{d}{d x}(x)}$
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}=\lim _{x \rightarrow 0} \frac{-\frac{1}{2 \sqrt{2-x}}-\frac{1}{2 \sqrt{2+x}}}{1}$
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}=\frac{-2}{2 \sqrt{2}}$
$\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}=\frac{-1}{\sqrt{2}}$
Thus, the value of $\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}$ is $\frac{-1}{\sqrt{2}}$