Question:
Evaluate
$\lim _{x \rightarrow 5}\left(\frac{x^{2}-25}{x-5}\right)$
Solution:
To evaluate:
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$
Formula used:
We have,
$\lim _{x \rightarrow a} f(x)=f(a)$
As $x \rightarrow 5$, we have
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5} \frac{(x+5)(x-5)}{x-5}$
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=x+5$
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=5+5$
$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=10$
Thus, the value of $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$ is $-10$.