Evaluate.
$\lim _{x \rightarrow 0}\left(\frac{e^{b x}-e^{a x}}{x}\right), 0
To evaluate:
$\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}$
Formula used
L'Hospital's rule
Let $f(x)$ and $g(x)$ be two functions which are differentiable on an open interval I except at a point a where
$\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})=0$ or $\pm \infty$
then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
As $\mathrm{X} \rightarrow 0$, we have
$\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}=\frac{0}{0}$
This represents an indeterminate form. Thus applying L'Hospital's rule, we get
$\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{b x}-e^{a x}\right)}{\frac{d}{d x}(x)}$
$\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}=\lim _{x \rightarrow 0} \frac{b e^{b x}-a e^{a x}}{1}$
$\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}=b-a$
Thus, the value of $\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}$ is b-a.