Question:
Evaluate $\left(i^{4 n+1}-i^{4 n-1}\right)$
Solution:
We have, $i^{4 n+1}-i^{4 n-1}$
$=i^{4 n} \cdot i-i^{4 n} \cdot i^{-1}$
$=\left(i^{4}\right)^{n} \cdot i-\left(i^{4}\right)^{n} \cdot i^{-1}$
$=(1)^{n} \cdot i-(1)^{n} \cdot i^{-1}$
$=i-i^{-1}$
$=\mathrm{i}-\frac{1}{\mathrm{i}}$
$=\frac{\mathrm{i}^{2}-1}{\mathrm{i}}$
$=\frac{-1-1}{\mathrm{i}}$
$=\frac{-2}{\mathrm{i}} \times \frac{\mathrm{i}}{\mathrm{i}}$
$=\frac{-2 \mathrm{i}}{\mathrm{i}^{2}}=\frac{-2 \mathrm{i}}{-1}$
$=2 \mathrm{i}$