Evaluate:
(i) $\sqrt[3]{36} \times \sqrt[3]{384}$
(ii) $\sqrt[3]{96} \times \sqrt[3]{144}$
(iii) $\sqrt[3]{100} \times \sqrt[3]{270}$
(iv) $\sqrt[3]{121} \times \sqrt[3]{297}$
(i)
36 and 384 are not perfect cubes; therefore, we use the following property:
$\sqrt[3]{a b}=\sqrt[3]{a} \times \sqrt[3]{b}$ for any two integers $a$ and $b$
$\therefore \sqrt[3]{36} \times \sqrt[3]{384}$
$=\sqrt[3]{36 \times 384}$
$=\sqrt[3]{(2 \times 2 \times 3 \times 3) \times(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3)} \quad$ (By prime factorisation)
$=\sqrt[3]{\{2 \times 2 \times 2\} \times\{2 \times 2 \times 2\} \times\{2 \times 2 \times 2\} \times\{3 \times 3 \times 3\}}$
$=2 \times 2 \times 2 \times 3$
$=24$
Thus, the answer is 24.
(ii)
96 and 122 are not perfect cubes; therefore, we use the following property:
$\sqrt[3]{a b}=\sqrt[3]{a} \times \sqrt[3]{b}$ for any two integers $a$ and $b$
$\therefore \sqrt[3]{96} \times \sqrt[3]{144}$
$=\sqrt[3]{96} \times 144$
$=\sqrt[3]{(2 \times 2 \times 2 \times 2 \times 2 \times 3) \times(2 \times 2 \times 2 \times 2 \times 3 \times 3)}$ (By prime factorisation)
$=\sqrt[3]{\{2 \times 2 \times 2\} \times\{2 \times 2 \times 2\} \times\{2 \times 2 \times 2\} \times\{3 \times 3 \times 3\}}$
$=2 \times 2 \times 2 \times 3$
$=24$
Thus, the answer is 24.
(iii)
100 and 270 are not perfect cubes; therefore, we use the following property:
$\sqrt[3]{a b}=\sqrt[3]{a} \times \sqrt[3]{b}$ for any two integers $a$ and $b$
$\therefore \sqrt[3]{100} \times \sqrt[3]{270}$
$=\sqrt[3]{100 \times 270}$
$=\sqrt[3]{(2 \times 2 \times 5 \times 5) \times(2 \times 3 \times 3 \times 3 \times 5)}$ (By prime factorisation)
$=\sqrt[3]{\{2 \times 2 \times 2\} \times\{3 \times 3 \times 3\} \times\{5 \times 5 \times 5\}}$
$=2 \times 3 \times 5$
$=30$
Thus, the answer is 30.
(iv)
121 and 297 are not perfect cubes; therefore, we use the following property:
$\sqrt[3]{a b}=\sqrt[3]{a} \times \sqrt[3]{b}$ for any two integers $a$ and $b$
$\therefore \sqrt[3]{121} \times \sqrt[3]{297}$
$=\sqrt[3]{121 \times 297}$
$=\sqrt[3]{(11 \times 11) \times(3 \times 3 \times 3 \times 11)}$ (By prime factorisation)
$=\sqrt[3]{\{11 \times 11 \times 11\} \times\{3 \times 3 \times 3\}}$
$=11 \times 3$
$=33$
Thus, the answer is 33.