Question:
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Solution:
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$.
We have:
$\left(-8 x^{2} y^{6}\right) \times(-20 x y)$
$=\{(-8) \times(-20)\} \times\left(x^{2} \times x\right) \times\left(y^{6} \times y\right)$
$=\{(-8) \times(-20)\} \times\left(x^{2+1}\right) \times\left(y^{6+1}\right)$
$=160 x^{3} y^{7}$
$\therefore\left(-8 x^{2} y^{6}\right) \times(-20 x y)=160 x^{3} y^{7}$
Substituting x = 2.5 and y = 1 in the result, we get:
$160 x^{3} y^{7}$
$=160(2.5)^{3}(1)^{7}$
$=160 \times 15.625$
$=2500$
Thus, the answer is 2500 .