Question:
Evaluate
$\lim _{x \rightarrow 4}\left(\frac{x^{3}-64}{x^{2}-16}\right)$
Solution:
To evaluate:
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}$
Formula used: We have,
$\lim _{x \rightarrow a} f(x)=f(a)$
and
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
As $x \rightarrow 4$, we have
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{(x-4)\left(x^{2}+4 x+16\right)}{(x+4)(x-4)}$
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{\left(x^{2}+4 x+16\right)}{(x+4)}$
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}=\frac{48}{8}$
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}=6$
Thus, the value of
$\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}$ is 6.