Each side of an equilateral triangle is 10 cm.
Find
(i) the area of the triangle and
(ii) the height of the triangle.
(i) The area of the equilateral triangle $=\frac{\sqrt{3}}{4} \times \operatorname{side}^{2}$
$=\frac{\sqrt{3}}{4} \times 10^{2}$
$=\frac{\sqrt{3}}{4} \times 100$
$=25 \sqrt{3} \mathrm{~cm}^{2}$
or $25 \times 1.732=43.3 \mathrm{~cm}^{2}$
So, the area of the triangle is $25 \sqrt{3} \mathrm{~cm}^{2}$ or $43.3 \mathrm{~cm}^{2}$.
(ii) As, area of the equilateral triangle $=25 \sqrt{3} \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{2} \times$ Base $\times$ Height $=25 \sqrt{3}$
$\Rightarrow \frac{1}{2} \times 10 \times$ Height $=25 \sqrt{3}$
$\Rightarrow 5 \times$ Height $=25 \sqrt{3}$
$\Rightarrow$ Height $=\frac{25 \sqrt{3}}{5}=5 \sqrt{3}$
or height $=5 \times 1.732=8.66 \mathrm{~m}$
$\therefore$ The height of the triangle is $5 \sqrt{3} \mathrm{~cm}$ or $8.66 \mathrm{~cm}$.