Each of the following defines a relation on N:
(i) $x>y, x, y \in \mathbf{N}$
(ii) $x+y=10, x, y \in \mathbf{N}$
(iii) $x y$ is square of an integer, $x, y \in \mathbf{N}$
(iv) $x+4 y=10, x, y \in \mathbf{N}$
Determine which of the above relations are reflexive, symmetric and transitive. [NCERT EXEMPLAR]
(i) We have,
$R=\{(x, y): x>y, x, y \in \mathbf{N}\}$
As, $x=x \forall x \in \mathbf{N}$
$\Rightarrow(x, x) \notin R$
So, $R$ is not a reflexive relation'
Let $(x, y) \in R$
$\Rightarrow x>y$
but $y
$\Rightarrow(y, x) \notin R$
So, $R$ is not a symmeteric relation
Let $(x, y) \in R$ and $(y, z) \in R$
$\Rightarrow x>y$ and $y>z$
$\Rightarrow x>z$
$\Rightarrow(x, z) \in R$
So, $R$ is a transitive relation
(ii) We have,
$R=\{(x, y): x+y=10, x, y \in \mathbf{N}\}$
$R=\{(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)\}$
As, $(1,1) \notin R$
So, $R$ is not a reflexive relation
Let $(x, y) \in R$
$\Rightarrow x+y=10$
$\Rightarrow y+x=10$
$\Rightarrow(y, x) \in R$
So, $R$ is a symmeteric relation
As, $(1,9) \in R$ and $(9,1) \in R$ but $(1,1) \notin R$
So, $R$ is not a transitive relation
(iii) We have,
$R=\{(x, y): x y$ is square of an integer, $x, y \in \mathbf{N}\}$
As, $x \times x=x^{2}$, which is a square of an integer $x$
$\Rightarrow(x, x) \in R$
So, $R$ is a reflexive relation
Let $(x, y) \in R$
$\Rightarrow x y$ is square of an integer
$\Rightarrow y x$ is also a square of an integer
$\Rightarrow(y, x) \in R$
So, $R$ is a symmeteric relation
Let $(x, y) \in R$ and $(y, z) \in R$
$\Rightarrow x y$ is square of an integer and $y z$ is also a square of an interger
$\Rightarrow x z$ must be a square of an integer
$\Rightarrow(x, z) \in R$
So, $R$ is a transitive relation
(iv) We have,
$R=\{(x, y): x+4 y=10, x, y \in \mathbf{N}\}$
$R=\{(2,4),(6,1)\}$
As, $(2,2) \notin R$
So, $R$ is not a reflexive relation
As, $(2,4) \in R$ but $(4,2) \notin R$
So, $R$ is not a symmeteric relation
As, $(2,4) \in R$ but 4 is not related to any natural number
So, $R$ is a transitive relation