Each of the equal sides of an isosceles triangle measures 2 cm more than its height, and the base of the triangle measures 12 cm.
Each of the equal sides of an isosceles triangle measures 2 cm more than its height, and the base of the triangle measures 12 cm. Find the area of the triangle.
Let the height of the triangle be h cm.
Each of the equal sides measures $a=(h+2) \mathrm{cm}$ and $b=12 \mathrm{~cm}$ (base).
Now,
Area of the triangle = Area of the isosceles triangle
$\frac{1}{2} \times$ base $\times$ height $=\frac{1}{4} \times b \sqrt{4 a^{2}-b^{2}}$
$\Rightarrow \frac{1}{2} \times 12 \times h=\frac{1}{4} \times 12 \times \sqrt{4(h+2)^{2}-144}$
$\Rightarrow 6 h=3 \sqrt{4 h^{2}+16 h+16-144}$
$\Rightarrow 2 h=\sqrt{4 h^{2}+16 h+16-144}$
On squaring both the sides, we get:
$\Rightarrow 4 h^{2}=4 h^{2}+16 h+16-144$
$\Rightarrow 16 h-128=0$]
$\Rightarrow h=8$
Area of the triangle $=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 12 \times 8$
$=48 \mathrm{~cm}^{2}$