Divide Rs 7000 among A, B and C such that A gets 50% of what B gets and B gets 50% of what C gets.
Let Rs $x$ be the amount of money recieved by C.
Then, amount of money B gets $=(50 \%$ of Rs $x)$
Amount of money A gets $=(50 \%$ of B $)$
$=(25 \%$ of Rs $x)$
Now, $x+(50 \%$ of Rs $x)+(25 \%$ of Rs $x)=$ Rs 7000
$\Rightarrow x+\left(x \times \frac{50}{100}\right)+\left(x \times \frac{25}{100}\right)=\mathrm{Rs} 7000$
$\Rightarrow x+\frac{50 x}{100}+\frac{25 x}{100}=\mathrm{Rs} 7000$
$\Rightarrow\left(x+\frac{50 x}{100}+\frac{25 x}{100}\right)=\mathrm{Rs} 7000$
$\Rightarrow \frac{175 x}{100}=\mathrm{Rs} 7000$
$\Rightarrow x=\mathrm{Rs}\left(7000 \times \frac{100}{175}\right)$
$\Rightarrow x=\mathrm{Rs} 4000$
$\therefore$ C gets Rs 4000 .
Amount of money B gets $=(50 \%$ of Rs $x)$
$=(50 \%$ of Rs 4000$)$
$=\operatorname{Rs}\left(4000 \times \frac{50}{100}\right)$
$=\operatorname{Rs} 2000$
Amount of money A gets $=(25 \%$ of Rs $x)$
$=(25 \%$ of Rs 4000$)$
$=\operatorname{Rs}\left(4000 \times \frac{25}{100}\right)$
$=$ Rs 1000