Discuss the continuity of the function f, where f is defined by
$f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$
The given function is $f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$
The given function is defined at all points of the real line.
Let c be a point on the real line.
Case I:
If $c<0$, then $f(c)=2 c$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x)=2 c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<0$
Case II:
If $c=0$, then $f(c)=f(0)=0$
The left hand limit of f at x = 0 is,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(2 x)=2 \times 0=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$
Therefore, f is continuous at x = 0
Case III:
If $0
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points of the interval (0, 1).
Case IV:
If $c=1$, then $f(c)=f(1)=0$
The left hand limit of f at x = 1 is,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow \perp^{-}}(0)=0$
The right hand limit of f at x = 1 is,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4 x)=4 \times 1=4$
It is observed that the left and right hand limits of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1
Case V:
If $c<1$, then $f(c)=4 c$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(4 x)=4 c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Hence, f is not continuous only at x = 1