Discuss the continuity and differentiability of f (x) = |log |x||.
We have,
f (x) = |log |x||
$|x|=\left\{\begin{array}{cl}-x & -\infty
$\log |x|=\left\{\begin{array}{cc}\log (-x) & -\infty
$|\log | x||=\left\{\begin{array}{lc}\log (-x) & -\infty
$(\mathrm{LHD}$ at $x=-1)=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1}$
$=\lim _{x \rightarrow-1^{-}} \frac{\log (-x)-0}{x+1}$
$=\lim _{h \rightarrow 0} \frac{\log (1+h)}{-1-h+1}$
$=-\lim _{h \rightarrow 0} \frac{\log (1+h)}{h}=-1$
$(\mathrm{RHD}$ at $x=-1)=\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}$
$=\lim _{x \rightarrow-1^{+}} \frac{-\log (-x)-0}{x+1}$
$=\lim _{h \rightarrow 0} \frac{-\log (1-h)}{-1+h+1}$
$=\lim _{h \rightarrow 0} \frac{-\log (1-h)}{h}=1$
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1
At 0 function is not defined.
$(\mathrm{LHD}$ at $x=1)=\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}$
$=\lim _{x \rightarrow 1^{-}} \frac{-\log (x)-0}{x-1}$
$=\lim _{h \rightarrow 0} \frac{-\log (1-h)}{1-h-1}$
$=-\lim _{h \rightarrow 0} \frac{\log (1-h)}{h}=-1$
$(\mathrm{RHD}$ at $x=1)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$=\lim _{x \rightarrow 1^{+}} \frac{\log (x)-0}{x-1}$
$=\lim _{h \rightarrow 0} \frac{\log (1+h)}{1+h-1}$
$=\lim _{h \rightarrow 0} \frac{\log (1+h)}{h}=1$
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1
At 0 function is not defined.
So, at 0 function is not continuous.
$(\mathrm{LHL}$ at $x=-1)=\lim _{x \rightarrow-1^{-}} f(x)$
$=\lim _{x \rightarrow-1^{-}} \log (-x)$
$=\log (1)=0$
$(\mathrm{RHL}$ at $x=-1)=\lim _{x \rightarrow-1^{+}} f(x)$
$=\lim _{x \rightarrow-1^{+}}-\log (-x)$
$=-\log 1=0$
$f(-1)=0$
Therefore, $f(x)=|\log | x||$ is continuous at $x=-1$'
$(\mathrm{LHL}$ at $x=1)=\lim _{x \rightarrow 1^{-}} f(x)$
$=\lim _{x \rightarrow 1^{-}}-\log (x)$
$=-\log (1)=0$
$(\mathrm{RHL}$ at $x=1)=\lim _{x \rightarrow 1^{+}} f(x)$
$=\lim _{x \rightarrow 1^{+}} \log (x)$
$=\log 1=0$
$f(1)=0$
Therefore, at $x=1, f(x)=|\log | x||$ is continuous.
Hence, function $f(x)=\| \log |x| \mid$ is not continuous at $x=0$